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Abstract: The importance of monitoring earthquakes for disaster management, public safety, and
scientific research can hardly be overstated. The emergence of low-cost seismic sensors offers
potential for widespread deployment due to their affordability. Nevertheless, vehicular noise in low-
cost seismic sensors presents as a significant challenge in urban environments where such sensors are
often deployed. In order to address these challenges, this work proposes the use of an amalgamated
deep neural network constituent of a DNN trained on earthquake signals from professional sensory
equipment as well as a DNN trained on vehicular signals from low-cost sensors for the purpose of
earthquake identification in signals from low-cost sensors contaminated with vehicular noise. To
this end, we present low-cost seismic sensory equipment and three discrete datasets that—when
the proposed methodology is applied—are shown to significantly outperform a generic stochastic
differential model in terms of effectiveness and efficiency.

Keywords: low-cost sensors; deep neural networks; vehicular noise; earthquake measurement;
earthquake signal contamination; seismometer

1. Introduction

Earthquakes are sudden movements along fault lines that release stored elastic energy
in rocks, generating seismic waves that propagate throughout the Earth [1]. Seismology
is a field abundant with data and is heavily reliant on data analysis. Each day witnesses
numerous earthquakes worldwide with magnitudes exceeding 2.5, which can be felt locally.
Additionally, every few days, earthquakes capable of causing structural damage occur [2].
Moreover, there is a continuous occurrence of numerous smaller earthquakes, typically
with magnitudes below 2.5, which are too weak to be perceptible but are consistently
recorded by modern instruments [3]. These minor seismic events offer valuable insights
into the mechanisms of earthquakes [4].

Monitoring earthquakes is important for disaster management, public safety, and
scientific research. It enables determining preparatory activities such as timely warnings,
evacuation plans, and response strategies in order to mitigate the impact of seismic events,
in addition to studying earthquake patterns to accrue valuable insights into Earth’s dynam-
ics. To this end, sensor networks, comprising mostly of seismometers and accelerometers
placed throughout the globe, play a pivotal role in this effort by continuously collecting
seismic data. These networks facilitate real-time monitoring, data analysis, and the devel-
opment of earthquake prediction models, ultimately enhancing the ability to protect lives
and infrastructure, and advance the scientific understanding of earthquake behavior.

The emergence of low-cost sensors represents a significant advancement in environ-
mental monitoring [5], in general, and earthquake monitoring [6], specifically, as their
affordability allows for widespread deployment. These sensors offer a plethora of advan-
tages, including increased spatial coverage and dense monitoring networks that allow for
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a more comprehensive understanding of environmental conditions. Moreover, their cost-
effectiveness allows for easier replacement in the event of malfunction or damage, ensuring
continuous data collection without substantial financial burdens. This democratization of
sensor technology not only enhances our ability to gather data across vast geographical
areas but also empowers communities, researchers, and organizations to address critical
environmental and societal challenges with greater precision and efficiency.

Vehicular noise contamination poses a significant challenge in urban environments,
where the deployment of low-cost sensors is common. This challenge stems from the
ubiquitous presence of vehicles on roads and highways, generating a continuous stream of
noise that can impact various aspects of urban life [7]. The deployment of low-cost sensors,
while advantageous for monitoring purposes, can also exacerbate the problem by providing
a platform for capturing and transmitting this noise. As urban areas continue to grow
and traffic congestion increases, the issue of vehicular noise becomes more pronounced,
affecting the well-being of residents, wildlife habitats, and overall quality of life [8]. The
task of effectively using sensor data to monitor and analyze while accounting for noise
contamination presents a complex problem that requires innovative solutions and advanced
earthquake signal processing and deep learning techniques [9].

Earthquake identification is of paramount importance due to its significant impact
on public safety, emergency response efforts, and disaster preparedness. Earthquakes are
natural disasters that can cause widespread destruction, loss of life, and disruption to
communities. The accurate and timely identification of earthquakes allows a variety of
critical actions that can mitigate their effects and save lives [10]. It is thus fundamental to
effective disaster management and empowers individuals, communities, and authorities
with the information needed to make informed decisions, take swift actions, and allocate
resources efficiently. The consequences of false positives, and negatives, underscore the
critical nature of reliable seismic monitoring systems in ensuring public safety and disaster
preparedness [11].

Motivation and Contribution

The aforementioned importance of accurate earthquake identification can hardly be
overstated, given the effect of earthquakes on so many aspects of life. Moreover, the
emergence of low-cost sensory equipment for such identification, and its widespread
adoption nowadays, calls for research on the effectiveness and efficiency of this use. This
is further exacerbated by the high density of such sensors that frequently are adjacent to
publicly accessible road infrastructure which in turn contaminates the signals received by
the sensors with vehicular noise. It is, thus, the lack of comprehensive studies addressing
the impact of vehicular noise on earthquake signals captured by low-cost sensors that this
work aims to address.

In order to address these challenges, this work proposes the use of an amalgamated
deep neural network (DNN) composed of (i) a DNN trained on earthquake signals from
professional sensory equipment, as well as (ii) a DNN trained on vehicular signals from
low-cost sensors, for the purpose of earthquake identification in signals from low-cost
sensors contaminated with vehicular noise. The key contributions of this work can be
summarised as follows:

• Creation and dissemination of a dataset of vehicular noise measured with low-cost
seismic sensor;

• Collection and dissemination of ground truth data from professional seismic measure-
ment equipment;

• Creation of DNNs for the aforementioned dataset approaches and experimentation on
their performance;

• Creation and dissemination of a two-fold synchronized dataset: seismic data from
a low-cost seismic sensor, and seismic data from a professional seismic sensor. Both
sensors are in very close proximity; and



Appl. Sci. 2023, 13, 10884 3 of 19

• Amalgamation of the aforementioned DNNs for the identification of earthquakes in
signals from low-cost sensors contaminated with vehicular noise and experimentation
on the DNN.

The rest of this paper is organized as follows: Section 2 discusses the key recent relevant
studies about seismology, seismic waves, sensors for measuring and removing noise from
seismic waves, and deep learning for earthquake and vehicle classification. Section 3
presents the proposed methodology and the deep learning classification algorithm utilized
in this work. Section 4 details the pre-processing techniques applied to the datasets and
the experiments conducted, wherein their respective results are presented and discussed.
Finally, this paper is concluded in Section 5.

2. Background and Related Work

In seismology, the foundation of knowledge lies in data analysis, with significant
breakthroughs often stemming from the examination of fresh datasets or the creation
of novel data analysis techniques [12]. Seismology focuses on the study of earthquakes
and associated phenomena, primarily applying the principles of continuous medium
mechanics, specifically the theory of elasticity. In contrast, seismic engineering is an applied
science concerned with understanding how earthquake-induced motion impacts man-made
structures, including buildings and other constructions [13].

Earthquake impacts on both natural and human-made structures are primarily driven
by the transfer of energy through seismic waves originating from the earthquake’s source.
Seismic waves propagate through the Earth and are detected at distant locations using sen-
sitive seismographs. Interpreting seismic records requires an understanding of how seismic
waves are generated and propagated, and how recording processes affect them. Advances
in seismic instrumentation now allow for accurate digital representation of particle motion
across a wide frequency range. However, this necessitates careful consideration of seismic
noise, the background irregular ground motion caused by various factors, including human
activities and natural phenomena. Occasionally, this background noise is interrupted by
organized energy patterns generated by seismic waves from natural or artificial sources.
These wave-trains, characterized by distinct arrivals associated with specific propagation
paths, become more pronounced with increasing distance from the source. Following the
initial body-wave phases, like P (compressional waves) and S (shear waves), there is an
increase in record amplitude as surface-guided waves arrive [14].

Over the centuries, seismology has evolved significantly. From Zhang Heng’s ancient
seismograph in 132 AD to the late 1800s when scientific research on seismology began,
progress was slow. It was not until around 1900 that precise measuring instruments,
like geophones and seismometers, emerged. These early devices were large, costly, and
had limited sensitivity. However, recent advances in micro-electro-mechanical system
(MEMS) technology have drastically reduced size and cost while improving sensitivity,
making MEMS-based seismic sensors highly promising for their ability to provide reliable
measurements across a wide bandwidth [15]. Modern seismographs produce digitized
information at varying regular time intervals sent to be analyzed on computers. Many
concepts of time series analysis, including filtering and spectral methods, are valuable in
seismic analysis [16].

The identification of noise (seismic included) depends on a plethora of parameters
and usually requires data analysis while depending on the domain or application, a part of
the information may be be treated as noise or useful signal [17]. Seismic noise monitoring
systems have been proposed [18] that address continuous traffic noise utilizing raw noise
records as well as shear-wave velocity profiles. Prior to seismic wave measurement and
identification, noise removal is another important factor that has been addressed [19].
Periodic noise poses a well-documented challenge in the context of seismic wave removal,
often originating from sources such as power lines, pump jacks, engine operations, or other
forms of interference. It introduces contamination to seismic data and has a notable impact
on subsequent data processing and interpretation. The proposed denoising approach
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hinges on the sparse representation of periodic noise, enabling its estimation without being
influenced by seismic reflections. Consequently, this method effectively reduces periodic
noise without compromising the integrity of seismic events. Similarly, the utilization of
machine learning algorithms for eliminating random noise in seismic data has emerged
as a crucial aspect of seismic analysis [20]. In this work, the authors emphasize that
the elimination of random noise from seismic data significantly affects the accuracy of
subsequent data processing. They achieve an enhancement in the signal-to-noise ratio
of seismic data through the application of a convolutional neural network trained on
noise. This not only results in a higher signal-to-noise ratio but also preserves more
valuable information.

Given the previously discussed importance of earthquake identification, and thus,
early warning systems, the prohibitive cost of high-end ground motion sensors often
leaves earthquake-prone areas unable to implement such systems for measuring seismic
waves. Low-cost MEMS-based ground motion sensors present a promising solution for
creating affordable, yet reliable and sturdy, seismometers. Traditional high-end monitoring
systems are highly dedicated measuring systems with high to very high precision of
measurement, usually significantly above the monitoring scenario’s requirements. The
low-cost approach in such monitoring systems attempts to minimize the cost (usually at
the level of one to, hopefully, two orders of magnitude) while preserving the precision
of measurements within acceptable [21]. The lower cost allows for a higher number of
deployed systems and a lower cost per system unit replacement, leading to a denser
network of interconnected systems compared to high-end solutions, offering redundancy,
expansive spatial measurements, and—utilizing AI methods—the capacity for collective
extraction of information. This collective approach yields insights unattainable by unique
systems, achieving significantly higher levels of precision compared to unique low-cost
systems and rivaling those of non-low-cost systems. The advancements in utilizing low-
cost sensors for detecting earthquakes and issuing warnings have shown remarkable
progress in recent years. This progress is evident in the expansion of station coverage, the
enhancement of data quality, and the broadening scope of applications related to earthquake
detection [22]. Real-time seismic signal waves are available to be plotted using ShakeMaps,
helping to assess the damage patterns and directivity of rupture. These ShakeMaps plots
have proven [23] helpful in establishing the peak ground velocity indicator of damage, and
the peak ground acceleration.

Similar to our proposed work for earthquake identification, some research efforts
have also been made for the event detection of earthquakes with machine learning al-
gorithms, applying time wave series data analogous to those used for different vehicle
types. The implementation of different machine learning algorithms determines the class
of automobiles [24] for distinguishing between earthquake and non-earthquake, vandal-
ism vibrations [25], even for event detection, phase identification, and the onset picking
time [26]. In all such cases, the results indicate that the use of deep neural networks was
superior in distinguishing and provided high classification accuracy during training, as
well as in the event and phase detection of earthquakes.

3. Proposed Methodology

Our work proposes the use of an amalgamated deep neural network constituent of a
deep neural network trained on earthquake signals from professional sensory equipment,
as well as a deep neural network trained on vehicular signals from low-cost sensors. These
sensors were placed at points with vehicular activity, enabling them to record passing
vehicles for model training. On the other hand, the professional sensory equipment
used consisted of high-end seismographs, which are used to record seismic events. The
key purpose is to convey the amalgamated deep neural network with the capability to
effectively discern earthquakes in signals from low-cost sensors that are contaminated with
vehicular noise, thereby avoiding false positives caused by vehicles. The proposed low-cost
sensors could be used in bulk and placed in different areas so they can record an upcoming
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seismic event. This could benefit researchers and give them the ability to record the events
from different sensors and extract valuable information. In addition, the low-cost sensors
are easy to maintain or replace, given their affordability in comparison to professional
equipment, and could be placed near roads for easier access to them. Finally, the model we
propose could be very useful when it comes to earthquake recognition, as it has the ability
to recognize the seismic event from a passing vehicle; our model is trained to discern the
difference between them. This model supports our proposal of placing the low-cost sensors
near roads for easier access, as passing vehicles will not affect the recognition process of
the model. A bird’s-eye view of the key pillars of this work is presented in Figure 1.

Vehicular noise 
data, 

low-cost sensor

Train 
DNN

Fuse 
DNNs

VN_DNN 
model

Earthquake signals, 
professional sensor

Train 
DNN

NOA_DNN
model

AM_DNN
model

Earthquake contaminated 
by vehicular noise signals, 

low-cost sensor

Exp 1

Exp 2

Earthquakes

Stochastic 
differential

model

Earthquakes

Figure 1. Architectural diagram of the proposed methodology.

The online availability of the programming code and data in the scientific research
offers numerous benefits, i.e., it improves transparency, collaboration, and accountability
by enabling independent verification of the findings. To this end, all data and code of
this work are available online (https://github.com/LeonidasAgathos/Identifying_earth
quakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise, accessed on 13
September 2023).

3.1. A Stochastic Approach

A very common scenario used to detect earthquake events involves signals from
low-cost sensors, placed in several areas near roads and a methodology that allows the
identification of earthquake events in such data. In our context, a seismic event is defined
as the transition from a state of pure noise to a seismic signal. The current methodology we
use to detect earthquake events, as presented in [27], is a stochastic differential model that
employs a sliding window technique on the time-series data of the sensor. This window is
incrementally moved through the dataset at predefined intervals. Within each window, the
data undergo a transformation process, the variance function of the transformed data is
computed, and its shape is assessed in relation to a power law distribution.

If the shape of the variance function closely aligns with the characteristics of a power
law distribution, it is postulated that this is indicative of the data window predominantly
representing noise. In this case, the model proceeds to the next window. However, when
the shape of the variance function diverges significantly from the expected power law
shape, the algorithm terminates and signals the detection of a seismic event.

In our case, we applied this algorithm to a dataset obtained from our low-cost seismic
monitoring system. The successful detection of a seismic event was determined based on
the algorithm’s ability to identify an outbreak near the initiation of the seismic event, while
not focusing on the detection of the whole event.

It is worth noting that, although this method demonstrated competency in identifying
seismic events in its original presentation, it faced challenges in distinguishing between

https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise
https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise
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seismic events and events triggered by external factors, such as passing vehicles. This
limitation was discussed as a key factor in the interpretation of the results.

3.2. Low-Cost Seismic Sensory Equipment

The low-cost sensor mentioned in Section 3.1 was created in the CMODLab of Ionian
University, Corfu, Greece; it consists of low-cost hardware and a data logger system.
Originally, it was created for detecting seismic events and was placed in various areas,
mostly near traffic roads. This placement is a part of the low-cost concept, so the sensors
are easily accessible and replaceable in case of malfunction.

The system employs a 3-axis geophone, operating at 4.5 Hz and 380 Ohm, serving
as the main data logger to record signals. A sampling rate of 225 Hz is archived from the
data logger and an accurate timestamp is added to each sample from a precise real-time
clock circuit. This clock is checked and corrected every hour by using internet information.
The recorded data are stored internally at the system in 5 min chunks (coinciding with
files); subsequently, these are transmitted to the database server every 5 min by using
internet connectivity.

The low-cost system consists of low-cost hardware and open-source software. The
system uses Raspberry Pi 3 B+, which is a credit-card-sized microcomputer board (see
Figure 2). In addition, the system uses an analog-to-digital board with 24-bit high speed
(ADS1256) precision, specialized for interconnection with the microcomputer and the real-
time clock circuit breakout board DS3231. To support the system’s energy needs, it uses a
step-down converter with +5Volt power, up to 3 Amps. The system is also fitted with a solar
panel, battery, and a solar charger controller to make the system autonomous. Moreover,
the system utilized additional accessories, such as a USB GSM–GPRS 4G modem to support
the system’s internet connection, a 3-axis geophone sensor with a cutoff frequency fc
set at 4.5 Hz, and a micro-SD 32 GB memory card that functions as the hard disk of
the microcomputer board and stores all the necessary software needed to support the
system (e.g., Python, data, etc.). The operating system used in the sensor is a Linux-based
operational system for Raspberry Pi. We also used Python and C++ to write and execute
scripts, depending on the needs of the task. The microcomputer board Raspberry Pi 3 B+,
is the heart of the data logger system, and was selected for its high adaptability to integrate
with various additional boards, like (I2c Bus, UART, SPI, GPIO, etc.), and it provides the
data logger with multiple capabilities.

Figure 2. Full data logger system setup with housing in a plastic waterproof IP67 box.
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In addition, as mentioned above, a 24-bit A/D high-speed analog-to-digital precision
board (ADS1256), as shown in Figure 3, is connected to the microcomputer board using the
40-pin GPIO connector.

Figure 3. Raspberry Pi 3 B+ in combination with the 24 bit high precision A/D board—ADS1256.

The A/D board has 24 bits of accuracy and has a quantization error 1/2 LSB of 224/max
input voltage. It can be adjusted to operate with a max input voltage of 3.3 or 5 volts. In our
case, the max input voltage is 5 volts, which means we have a quantization error of 1/2 of
5 volts/224. The board has 8 analog inputs, which can work in a simple mode (8 input
channels) or in a differential mode (4 input channels), similar to our data logger. It can
accommodate sample rates of up to 30K samples per second (in a single channel—simple
mode) and features an internal amplifier with an amplification factor of up to 64. In the
proposed system, it uses a sampling rate of 3750 Hz and an amplification factor of 64.
As per the datasheet (https://www.ti.com/lit/ds/symlink/ads1256.pdf, accessed on 13
September 2023) of the ADS1256, the noise level is up to 6 bits, while the effective number
of bits (ENOB) with the buffer off is essentially the remaining 18 bits. The output of the
A/D card is given in counts. According to the amplification factor of 64, the differential max
input voltage that can be measured from the A/D card cannot be higher than ±78.125 mV.
Each count has a value of 224 ± −78.125 mV, so that means that each count has a value of
0.000009312 mVolts (minimum count step).

The system’s 3-axis 4.5 Hz geophone, as shown in Figure 4, is a SEIS (https://www.se
is-tech.com/4-5hz-3c-geophone/, accessed on 13 September 2023) 4.5 Hz 3C geophone,
and it is connected to our data logger via inputs of the A/D high-speed analog-to-digital
precision board. The geophone is connected in differential mode (A0–A1 input for X-Axis,
A2–A3 input for Y-Axis, A4–A5 input for Z-Axis, while A6–A7 is not used). The sensitivity
of the geophone for each axis, as per the datasheet (https://www.seis-tech.com/wp-conte
nt/uploads/2022/01/3c-geophone-4.5hz.pdf, accessed on 13 September 2023), is about
28.8 Volt/m/s (in open circuit) or 0.0288 Volt/mm/s. Finally, according to the maximum
input voltage of the A/D card and the geophone output voltage, we can see that our system
has an area to collect the ground velocity data of almost ±2.71 mm/s.

https://www.ti.com/lit/ds/symlink/ads1256.pdf
https://www.seis-tech.com/4-5hz-3c-geophone/
https://www.seis-tech.com/4-5hz-3c-geophone/
https://www.seis-tech.com/wp-content/uploads/2022/01/3c-geophone-4.5hz.pdf
https://www.seis-tech.com/wp-content/uploads/2022/01/3c-geophone-4.5hz.pdf
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Figure 4. Three-axis geophone with cutoff frequency f c = 4.5 Hz.

3.3. Vehicular Noise

The acquisition of data originating from vehicular noise, utilizing the aforementioned
geophone system in Section 3.2, constituted a crucial phase of our experiments. The key
requirement was to identify a location to place the sensor on a major road with a gap
close to the road for the positioning of the sensor. Additionally, in order to be able to
monitor the collection process, the location had to be opportune for human operators
tasked with recording the passing vehicles so that we could confirm the ground truth and
align it with the signals captured by the geophone. To fulfill all these requirements, we
selected a frequently accessed road in close proximity to our laboratory in the Garitsa area
in Corfu, Greece. For all the above constraints, we collected the signals of passing cars
via the geophone of the sensor, along with the audio recording, in order to assist in the
labeling phase of ground truth later on. Using these recordings, we created an annotated
dataset containing vehicular noise. In the post-collection process, to create the final dataset
for vehicular noise, we cleaned and labeled the data by selecting the most representative
axes of the geophone data containing the records from the movement of the ground. For
the labeling process, the timestamps were labeled manually using the synchronous audio
mentioned previously, collected concurrently with the geophone data, each time a vehicle
passed. In order to further support the reproducibility of our work, the data of this dataset
are available online (https://drive.google.com/drive/folders/1_H72gqp2ObBizB_YHRI0
u53yTSHRiLqc?usp=drive_link, accessed on 13 September 2023).

3.4. Ground Truth Earthquake Dataset

After collecting the vehicular dataset, we also had to collect a dataset about earthquake
events that would act as the ground truth. To complete this task, a data pipeline was created
using the Obspy framework [28], which extracts waveform events from the European
Integrated Data Archive in the National Observatory of Athens (NOA) [29] and saves the
value of data and the timestamp of each signal wave in raw format. The seismic events were
recorded and downloaded from the station VLS in Valsamata, Kefalonia, Greece, which is
part of the NOA network. After collecting data for 773 seismic events from NOA for the VLS
station, data cleaning was applied. All earthquakes were visually inspected for anomalies
during their recording process. Earthquake signals that displayed irregular patterns in
their recording before or after the main event were discarded. Figure 5 shows examples
of regular and irregular earthquake signals. After the above phase, a total of 503 seismic
events remained in our training dataset. To label the data and find the timestamps of the

https://drive.google.com/drive/folders/1_H72gqp2ObBizB_YHRI0u53yTSHRiLqc?usp=drive_link
https://drive.google.com/drive/folders/1_H72gqp2ObBizB_YHRI0u53yTSHRiLqc?usp=drive_link
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start time and end time of each event, we used the STA/LTA Z-Detect [30] algorithm. This
task was conducted using Obspy, which also features libraries for this task. Finally, and in
preparation for feeding these data to the neural network, we created data frames for all
the seismic events with their original values, and their values normalized in the range of
(−1, 1). In order to further support the reproducibility of our work, the data of this dataset
are available online (https://drive.google.com/drive/folders/1AgB4aC3yI7axPM9Jp4Rh
vkwORBjOK5ST?usp=drive_link, accessed on 13 September 2023).

(a)

(b)

Version September 25, 2023 submitted to Appl. Sci. 10 of 19

(a)

(b)

(c)

Figure 5. (a) Regular earthquake signal; (b) Irregular earthquake signal; (c) Irregular earthquake
signal.

(c)

Figure 5. (a) Regular earthquake signal; (b) irregular earthquake signal; (c) irregular earth-
quake signal.

https://drive.google.com/drive/folders/1AgB4aC3yI7axPM9Jp4RhvkwORBjOK5ST?usp=drive_link
https://drive.google.com/drive/folders/1AgB4aC3yI7axPM9Jp4RhvkwORBjOK5ST?usp=drive_link
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3.5. Training Process and Creation of DNNs

In order to train the models discussed herein, the following tasks were performed:

• Data preparation included several format conversion tasks aimed at converting the
data into a proper form;

• Data normalization, wherein data were linearly normalized in the range of [−1, 1];
• Class imbalance handling, dealt with the imbalance of the dataset using the NearMiss

method [31];
• Train–test split, where the available data were split in training and testing by means of

a generic approach of an 80–20% split, so we could use enough data to train the models.

In order to create the classification models based on each of the aforementioned
datasets (Sections 3.3 and 3.4), we utilized the TensorFlow [32] and Keras [33] frameworks.
Both these frameworks are renowned for their high performance. In detail, the used
classification model is a long short-term memory model [34], which contains five layers for
training and validation:

• A hidden LSTM (long short-term memory neural network) [35] layer with 64 units
and a return_sequences = True parameter, which returns the full sequence of outputs
for each input sequence and allows stacking additional recurrent layers;

• A ‘flatten’ layer [2], which flattens the 3D output from the LSTM layer into a 2D
tensor; this is typically done to connect the LSTM layer to a standard feed-forward
neural network;

• Two dense layers [36]: The first layer comprises 32 units and the second of 16 units,
which are fully connected, and each neuron is connected to every neuron in the
previous layer. Both dense layers use the ReLU (rectified linear unit) [37] as activa-
tion functions;

• An output layer, which is also a dense layer that represents the output of the model.
The activation function used in this case is the sigmoid function [38], which outputs a
probability score between 0 and 1.

3.6. Two-Fold Synchronized Dataset

The final seismic signal dataset consists of time-series data collected from our low-cost
system, described in Section 3.2, strategically placed in a region prone to seismic activity.
This dataset primarily comprises seismic signals associated with earthquake events. These
signals exhibit a wide spectrum of characteristics, encompassing various magnitudes and
frequencies. Of particular significance is the inclusion of ambient noise originating from
passing vehicular traffic. This environmental noise component, stemming from the dataset’s
proximity to a roadway, introduces a distinctive dimension to our dataset. While seismic
signals provide insights into genuine ground motion events, the presence of vehicular noise
poses a challenge that reflects real-world scenarios and presents a challenge to our machine
learning model.

To ensure the dataset’s reliability, we cross-referenced our recorded signals with data
from established seismographs from NOA, known for their accuracy and trustworthiness.
The purpose of this dataset is to test both the stochastic and amalgamated models, in
order to verify their ability to distinguish between earthquake signals against vehicular
noise signals. The dataset was recorded and saved into 84 distinct csv files, which then
were visually inspected, and each data point was labeled either as an earthquake or
noise (irrespective of being vehicular or otherwise). Later, the same procedure as with
the previous datasets was performed to prepare it for the testing phase. In order to
further support the reproducibility of our work, the data of this dataset are available
online (https://drive.google.com/drive/folders/16uKG9eq1kkf9Xpk39Tt96HHBtZ06N6
qq?usp=drive_link, accessed on 13 September 2023).

https://drive.google.com/drive/folders/16uKG9eq1kkf9Xpk39Tt96HHBtZ06N6qq?usp=drive_link
https://drive.google.com/drive/folders/16uKG9eq1kkf9Xpk39Tt96HHBtZ06N6qq?usp=drive_link
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4. Experimental Evaluation

This section details the setup that was used for performing the experimental evaluation
of the proposed methodology, as well as the results received.

4.1. Experimental Setup

For the experimental part of our research, we utilized the datasets previously de-
scribed: the dataset for vehicular noise (Section 3.3), the ground truth earthquake dataset
(Section 3.4), as well as the two-fold synchronized dataset (Section 3.6). The former aims at
providing information on vehicular noise, as perceived by the proposed low-cost sensory
equipment. The second dataset aims to act as the ground truth point of reference, given
its provenance from the European Integrated Data Archive in the National Observatory
of Athens, and the fact that the sensory equipment used to collect these data is of very
high accuracy. The latter dataset is the combined and synchronized dataset of seismic data
from the low-cost seismic sensor in addition to seismic data from the professional seismic
sensor, while both sensors were in very close proximity. All these datasets are also avail-
able (https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_senso
rs_signals_contaminated_with_vehicular_noise/blob/main/Data_Availability, accessed
on 13 September 2023). For the training part of the process, as extensively discussed in
Section 3.5, the TensorFlow and Keras frameworks were utilized to create the classification
models. The creation of DNNs was based on the LSTM classification model (see Section 3.5
for more details) using five layers for training and validation. The hardware configuration
used was a computer with an i7-9700k CPU, featuring 8 cores and 16 gigabytes of RAM,
along with an MSI GTX 1660 Ti GPU, equipped with a 6-gigabyte memory card. In order to
evaluate the results received, the metrics used herein were accuracy, precision, recall, F1
score, and the area under the curve (AUC) [39], as per the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall or Sensitivity =
TP

TP + FN
(3)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

where TN, FN, FP, and TP are true negative, false negative, false positive, and true
positive, respectively.

4.2. Training Model 1

In this training model, we trained a DNN (https://github.com/LeonidasAgathos/Ide
ntifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/b
lob/main/Model_for_Car.ipynb, accessed on 13 September 2023) to identify vehicular
signals so that the model can predict when we have a signal from a passing vehicle or pure
noise. To achieve that, we had to normalize the data in the range (1, −1) and additionally
balance the data. The balancing was done by undersampling the majority class (noise class)
using the method NearMiss (version1), so we have the same amount of data on both classes.
After the pre-processing of the data, we created the DNN, which contained four layers (as
per Section 3.5). We used one LSTM layer followed by a ‘flatten’ layer and three dense
layers. LSTM layers are widely used for time series predictions as they can learn patterns
and correlations within the time series, crucial for earthquake detection. The other layers
are simple ones that assist in transforming the data. The data were allocated with 80% for
training and 20% for testing. The results of the training are shown in Table 1 while the ROC
curve is shown in Figure 6.

https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Data_Availability
https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Data_Availability
https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_for_Car.ipynb
https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_for_Car.ipynb
https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_for_Car.ipynb
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Table 1. Performance metrics for training model 1.

Accuracy Precision Recall F1 Score AUC Curve

68% 77% 52% 69% 73%
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The results, despite being promising, are far from optimal because of the complexity of
the data we used for training. Also, signals were labeled manually using the synchronized
audio files as ground truth, which means that minor discrepancies between the audio and
the file may have occurred.

4.3. Training Model 2

The second model (https://github.com/LeonidasAgathos/Identifying_earthquakes_i
n_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_for
_Eartquake.ipynb, accessed on 13 September 2023) was trained to identify earthquake
events. To perform this task, the NOA data were used, which, as mentioned above in
Section 3.4, includes 502 seismic events. After collecting the data, during the pre-processing
phase, normalization was applied in the (−1, 1) range. After that, we performed the
balancing of the data and the creation of the DNN. As mentioned before, the balancing
method we used was NearMiss (version 1) and the DNN contained the same layers as the
prior training model 1 (Section 4.2) for the same reasons mentioned above. In this model,
samples were classified as either noise or earthquake. Table 2 shows the training and test
results while the ROC curve is shown in Figure 7.

Table 2. Performance metrics for training model 2.

Accuracy Precision Recall F1 Score AUC Curve

75% 83% 63% 72% 82%

The training was conducted in 10 epochs, selected to avoid over-fitting, and lasted
approximately 2 min. The results received from the training and testing phase were better
than the previous model but again far from optimal.

https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_for_Eartquake.ipynb
https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_for_Eartquake.ipynb
https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_for_Eartquake.ipynb
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4.4. Experiment 1

The first experiment in this study employed the stochastic differential model, as
described in Section 3.1. The primary objective of this model was to identify the onset of
seismic events within an arbitrary time-series dataset. To do that, the two-fold synchronized
dataset was fed to the stochastic differential model. Then, we extracted the actual starting
point of every earthquake event and compared it to the true labels held on the two-fold
synchronized dataset files. Finally, we had to evaluate the results and extract the metrics of
the results.

The results obtained from this experiment can be seen in Table 3 and Figure 8. The
metrics received from the first experiment show us a moderate performance of the model;
the accuracy and precision reached 46% while the F1 score was 63%. Also, the AUC curve
(shown in Figure 9) was 50% and the recall was at 100%.
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Figure 8. Results of the stochastic algorithm’s performance.

Table 3. Performance metrics for experiment 1.

Accuracy Precision Recall F1 Score AUC Curve

46% 46% 100% 63% 50%
Version September 25, 2023 submitted to Appl. Sci. 15 of 19

Figure 9. AUC for the Stochastic Model.

Figure 10. AUC for the Proposed Model.

achieving a precision score exceeding 30%, underscoring its capacity to accurately identify 462

positive instances (true positives) while mitigating the occurrence of false positive errors. 463

Moreover, our model attains a substantially improved F1 score, surpassing the stochastic 464

model by more than 20%. This superior F1 score attests to our model’s ability to strike an 465

optimal balance between precision and recall, making it a promising choice for various 466

real-world scenarios. 467

As show in Figure 11, we can see how our model performed, in real world scenarios. 468

The red color presents the space between the first point predicted as earthquake until the 469

last point predicted as earthquake. The two vertical lines show the actual start and end of 470

the earthquake (ground truth). When it comes to the start of the event, our model classifies 471

the starting point exactly at the onset. As we can also observe, the model classifies the 472

whole earthquake event, not only the starting point. The ending part of an earthquake 473

is always a complex task so the model performs a decent classification on that as well. 474

When comparing these results with the stochastic methodology (4.4), we can see a big 475

improvement on finding the earthquake events, not only on the metrics, but also in the 476

actual usage of a model like this, which is detecting a earthquake event. 477

Figure 9. AUC for the stochastic model.

4.5. Experiment 2

In our second experiment, we created an amalgamated DNN model (https://github.com
/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_
with_vehicular_noise/blob/main/Model_Concatenation.ipynb, accessed on 13 September
2023), which includes the two models from Sections 4.2 and 4.3. The purpose of this experi-
ment is for our model to be able to classify the starting point of an earthquake event without
confusion from car signals and to perform better than the current methodology used by the
stochastic model. This was achieved by combining the two different trained models and
concatenating them, thus resulting in a single tensor that is the concatenation of all inputs.
Initially, the pre-trained models of noise–cars and noise–earthquakes were loaded, and we
applied the concatenation process. After that, we had to load the two-fold synchronized
dataset and pre-process the data, which pertained to dropping the unnecessary columns

https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_Concatenation.ipynb
https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_Concatenation.ipynb
https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_Concatenation.ipynb
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and normalizing the data. With our two models in the same shape and the two-fold syn-
chronized dataset in the proper form, our final model was ready to classify the two-fold
synchronized dataset. We set a dense layer with the activation function “sigmoid”, as we
needed to differentiate between noise and earthquakes. We considered car signals and noise
in the same class, as the task was to find the earthquake events and separate them from
any noise signals. To compare the results, we had to classify the two-fold synchronized
dataset based on the final model we created. After that, we had to find the first point of
every file in the two-fold synchronized dataset, which was classified as an earthquake in
order to determine the starting point of the event. This would also be the point where we
would assess proper metrics and compare the two experiments. We saved the classified
labels along with the true labels, so we could derive the metrics from this experiment. The
results of the metrics can be seen in Table 4.

Table 4. Performance metrics for experiment 2.

Accuracy Precision Recall F1 Score AUC Curve

78% 78% 100% 88% 51%

As we can see, the accuracy is 78%, which means that we see a big improvement when
compared to the results of the experiment in Section 4.4, and our model was able to classify
the start of the event, in a much more efficient way. Also, the precision of this experiment is
78%, which means our model performed well in finding the actual start of the earthquake
events (the positive class). The recall was found to be at 100% due to the one class we have
in the predicted labels (we only kept the positive class, which indicates the earthquake).
Finally, the F1 score was found to be at 88%, which is likely the most important metric to
consider in this experiment, as our target was to classify as many true positives as possible
and the AUC curve (shown in Figure 10) was at 51%, which is probably caused by the lack
of the negative class in the given dataset.
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In summary, the results, as illustrated in Figure 11, firmly validate the efficacy of our
proposed methodology when compared to the stochastic approach. Our proposed model
exhibits notably superior performance, emphasizing its potential in practical applications.
Specifically, our proposed model achieves comparable results in the recall metric when
contrasted with the stochastic model. However, it significantly outperforms the latter by
achieving a precision score exceeding 30%, underscoring its capacity to accurately identify
positive instances (true positives) while mitigating the occurrence of false positive errors.
Moreover, our model attains a substantially improved F1 score, surpassing the stochastic
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model by more than 20%. This superior F1 score attests to our model’s ability to strike an
optimal balance between precision and recall, making it a promising choice for various
real-world scenarios.

As shown in Figure 12, we can see how our model performed in real-world scenarios.
The red color presents the space between the first point predicted as the earthquake to the
last point predicted as the earthquake. The two vertical lines show the actual start and
end of the earthquake (ground truth). When it comes to the start of the event, our model
classifies the starting point exactly at the onset. As we can also observe, the model classifies
the whole earthquake event, not only the starting point. The ending part of an earthquake
is always a complex task so the model performs decently (regarding classification) on that
as well. When comparing these results with the stochastic methodology (Section 4.4), we
can see a big improvement in finding the earthquake events, not only on the metrics, but
also in the actual usage of a model like this, which detects an earthquake event.

While our cost-effective system, built on open hardware and software, offers an
attractive alternative to pricier traditional seismographs, it comes with inherent limitations
in the sampling rate, bit precision, and amplification. Our dataset, a combination of high-
quality and low-cost recordings, presents an imbalance issue due to the significantly smaller
proportion of low-cost data. This imbalance affects our model’s outcomes. Additionally,
the constraints tied to our DNN’s architecture were expected, given its off-the-shelf nature.
However, this architecture can be enhanced through increased parameterization.
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Figure 12. Results of the amalgamated DNN model’s performance.

5. Conclusions

This paper underscores the profound significance of earthquake monitoring for the
purposes of disaster management, public safety, and scientific research. Moreover, the
pivotal role of sensor networks in amassing seismic data is presented, forming the corner-
stone of current earthquake detection capabilities. In that context, the advent of low-cost
sensors has unlocked the potential for their extensive deployment in the field, despite their
susceptibility to vehicular noise pollution. Low-cost seismic sensors present a formidable
challenge, necessitating innovative solutions for accurate signal extraction. Since the im-
portance of precise earthquake identification cannot be overstated, as it holds the key to
timely alerts and informed decision-making, herein, we propose the use of an amalgamated
deep neural network (DNN) composed of (i) a DNN trained on earthquake signals from
professional sensory equipment, as well as (ii) a DNN trained on vehicular signals from
low-cost sensors, for the purpose of earthquake identification in signals from low-cost
sensors contaminated with vehicular noise.

Our proposal includes a detailed presentation of a low-cost seismic sensory equipment,
which is designed to be approximately two orders of magnitude less expensive than typical
professional seismic measurement equipment. Still, the low-cost seismic sensory equipment
was shown to be prone to vehicular noise contamination. Accordingly, the proposed
amalgamated deep neural network underwent evaluation through experimentation and
has manifested significant performance improvements compared to a generic stochastic
differential model. The superiority of the proposed methodology addresses the need of
effectiveness, as it identifies both the beginning and the end of a seismic event, as well
as the need of efficiency, as indicated by the performance measures. Future plans will
include customizing the generic DNNs deployed in this study for the task at hand, in
order to address the necessities of the work’s scenario and achieve even higher efficiency
in the end identification process. Moreover, we plan to expand the two training datasets
(vehicular noise and ground truth from professional seismometers) provided herein to
ensure more generality and to better train the DNN, accordingly obtaining more general
results. Finally, we plan to extend our low-cost network of sensors in locations near the
professional seismometers in order to enhance the two-fold synchronized dataset and to
test even more diverse scenarios.
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