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Abstract: Modern agriculture is facing unique challenges in building a sustainable future for food1

production, in which the reliable detection of plantations’ threats is of critical importance. The2

breadth of existing information sources, and their equivalent sensors, can provide a wealth of3

data which, to be useful, must be transformed into actionable knowledge. Approaches based on4

Information Communication Technologies (ICT) have been shown to be able to help farmers, and5

related stakeholders, make decisions on problems by examining large volumes of data while assessing6

multiple criteria. In this paper we address the automated identification (and counting of instances)7

of the major threat of olive trees and their fruit, the Bactrocera Oleae (a.k.a. Dacus) based on8

images of the commonly used McPhail trap’s contents. Accordingly, we introduce the “Dacus Image9

Recognition Toolkit" (DIRT), a collection of publicly available data, programming code samples10

and web-services focused at supporting research aiming at the management the Dacus as well as11

extensive experimentation on the capability of the proposed dataset in identifying Dacuses using12

Deep Learning methods. Experimental results indicated performance accuracy (mAP) of 91.52% in13

identifying Dacuses in traps’ images featuring various pests. Moreover, the results also indicated a14

trade-off between images’ attributes affecting detail, file size & complexity of approaches and mAP15

performance that can be selectively used to better tackle the needs of each usage scenario.16

Keywords: object recognition; deep learning; Bactrocera Oleae; Dacus; olive-fruit fly; smart-traps;17

public dataset; public API/web-service; IPM DSS; olive cultivation18

1. Introduction19

Modern agriculture is facing unique challenges in building a sustainable future [1,2] in a way that20

empowers the agricultural sector to meet the world’s food needs. Reliable detection of plantation’s21

threats by pests/diseases as well as proper quantification of induced damages are of critical importance22

[3,4]. Moreover, early detection of these phenomena is crucial for managing and reducing their23

spread, maintaining production’s quality and quantity as well as reducing costs, trade disruptions and24

sometimes even mitigate human health risks.25

Pests’ and diseases’ detection is done on information aggregated from various sources such as26

plant examination, arrays of plantations’ sensors, diagnostic images of plants, weather stations, etc27

[5,6]. Such wealth of information, to be useful in transforming raw data to actionable knowledge,28

requires advanced Information Communication Technologies (ICT) approaches that will help farmers,29

and related stakeholders, make decisions on problems requiring large volumes of data and dependent30

on multiple criteria [7]. It is thus evident that modern agriculture requires adoption of production31
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processes, technologies and tools derived from scientific advances, results from research and innovation32

activities in different fields (ICT, agronomic, entomologic, weather analysis, etc) [8].33

As olive trees are the most dominant permanent crop within EU in terms of occupied areas (40% of34

permanent crops’ total area [9]) with more than 1500 cultivars [10] just in the Mediterranean, our work35

focuses on one of its major threats [11], the olive fruit fly (Bactrocera Oleae, Dacus). Measurements of36

the fly’s infestation in olive groves are predominantly done with manual methods involving traps,37

while one of the key requirements in verifying an outbreak lies in measuring the pests collected in38

a trap over a time-span [12]. This process necessitates frequent and time consuming manual checks39

similar to no other parameter/requirement of the trap.40

Advanced traps, or smart-traps, feature a camera taking pictures of the pests collected by the trap41

that are then examined by interested parties [13–17]. Based on the images of the pests collected in the42

traps, stakeholders such as farmers, entomologists, agronomists, etc. can identify and measure the43

collected pests, customise the frequency of trap’s examination while also minimise the examination44

time and its associated difficulty.45

1.1. Motivation and Contribution46

Despite the aforementioned existing advances of smart-traps, in order to be able to extract47

knowledge from the aforementioned smart-traps’ collected data, existing methodologies must be able48

to compare results. Thus, use of a common set of traps’ observation data is necessary for the testing of49

the efficiency and effectiveness of the methods, while also providing reference for comparison of new50

and existing methods in order to show progress, as is the case with most scientific datasets [18,19]. To51

the best of our knowledge existing research works in automated Dacus identification are not operating52

on the same data and thus the results presented therein are not easily comparable.53

Data collection from Dacus traps is a lengthy process that requires multiple locations of olive54

groves, frequent physical attention to traps, minor entomological knowledge, appropriate hardware,55

while it is only possible for the chronological period that Dacuses are active [20]. All of these factors56

make the collection of Dacus traps data rather difficult. Thus, the evaluation of new methods is57

hampered by the lack of easily accessible data to test the methods on.58

To address the aforementioned requirements, we introduce the Dacus Image Recognition Toolkit59

(DIRT), a collection of publicly available data, programming code samples and web-services focused60

at supporting research aiming at the management the olive fruit-fly. DIRT offers:61

• a dataset of images depicting McPhail traps’ contents,62

• manually annotated spatial identification of Dacuses in the dataset,63

• programming code samples in matlab that allow fast initial experimentation on the dataset or64

any other Dacus image set,65

• a public rest https API and web-interface that reply to queries for Dacus identification in user66

provided images,67

• extensive experimentation on the use of deep learning for Dacus identification on the dataset’s68

contents.69

The rest of the paper is organised as follows: Section 2 presents the related work on automated70

Dacus identification, and smart-trap works, while Section 3 discusses a general architecture for a71

smart-trap. Section 4 details the toolkit’s components: the creation processes of the dataset and a72

complete analysis of its contents, the programming code samples provided and the Dacus identification73

API. Next, Section 5 explores the use of deep learning for the identification of Dacuses and presents74

extensive experimental results obtained using the dataset. Finally, the paper is concluded in Section 675

including details on future directions concerning the toolkit that could ameliorate its usability and76

further support pest management research.77
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2. Related Research78

This Section details related work on automated Dacus identification, and smart-trap works as79

presented in the literature. Most of the existing research on pests’ identification from images utilises80

some form of image processing in order to discard extraneous information from the images and81

highlight the features related to the pests to be identified. Moreover, in most cases, an assumption on82

the size of the pests to be identified has also been made, either based on training or with hard-coded83

thresholding, rendering thus pixel-sizes outside a range either noise or alternative to the intended84

pests. This, spatial feature-set, allows only for predefined aimed pests’ size variability, while also it85

makes no distinction of entirely different pests of the same size.86

In [17], Tirelli et al. presented an automatic monitoring of pest insects low consumption wireless87

networking image sensors. Therein, open-air examination areas were placed near plats aiming at88

recording the plants’ pests. Subsequently, images of the examination area during sampling for pests89

were compared to reference images of the same examination area without pests in order to calculate90

their difference. Hard-coded thresholding was used in order to trim out very small or very large91

pixel-sized differences, and the remaining were assumed to be pests. The image processing also92

included noise reduction and conversion to binary image, all done at a central server. Experimentation93

showed correlation of the pests detected with the ground-truth of pests.94

Another smart-trap is also presented in [16]. Therein, Philimis et al. describe a wirelessly95

connected monitoring system that consists of automated traps with optical and motion detection96

modules for capturing the pests as well as a central station that collects, stores and makes available97

processed results, such as insect population. This system allows for real-time analysis of pests’ images98

leading to determination of its species (Medfly or Dacus) and as well as its sex. Sadly, the work does99

not elaborate further as to the either the methodology for the real-time identification or its accuracy.100

Nevertheless, the work is part of the EU Project “e-FlyWatch"1 wherein little provided explanations101

indicate that the methodology is based on a spatial features that compare the identified pest with102

templates in addition to pattern-based identification for “unique insect features, as for example the103

abdomen, wings and thorax"2.104

In [15], Wang et al. presented the design of an image identification system using computer vision105

methods for a wide variety of fruit flies that negatively impact international fruit trade. The system106

proposed therein tackles 74 species that constitute the majority of pests in the Tephritidae. Their dataset107

includes three body parts, the wing, abdomen, and thorax of fruit flies based on which identification is108

performed either individually or in any combination. The identification process includes steps such as109

gamma correction for varying illumination issues, multi-orientation and multi-scale features based on110

Gabor filters and k-NN classification. Experimentation indicated an overall classification success rate111

of 87% at the species level.112

Identification of insects that are submerged in liquids are not only interesting for identifying113

pests in collections of unsorted material but to the theme if this work as well, as traps that use liquid114

pheromones to attract pests usually lead to “soup images" where the pests to be identified are more115

often than not submerged in the liquid. Sun et al. [21] proposed an image analysis approach for116

analysing insect soup images by identifying dark bodies in bright background leading to shapes117

of pests. Subsequently, measurements such as size/area, length, width, colour as well as feature118

extraction are done, based on which insect sub-region sorting based on size is finally made.119

Doitsidis et al. [13] presented an automated McPhail trap for the monitoring of Dacus’ population.120

Their smart-trap design allows for image capturing of the contents of the trap that are subsequently121

transmitted to a server and processed in order identify Dacuses. The methodology for the Dacuses122

identification in the images is based on image processing procedures such auto brightness correction,123

1 https://cordis.europa.eu/project/rcn/96182_en.html
2 https://cordis.europa.eu/result/rcn/141151_en.html

https://cordis.europa.eu/project/rcn/96182_en.html
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edge detection (CLF), conversion to binary (Otsu), bounds detection (Circle Hough Transform) and124

noise reduction. Training was done using 100 manually annotated images that lead to a computed125

average size (in terms of percentage of black area - black pixels) of a single fruit fly as a percentage of126

the area of interest, i.e. the trap, making thus requiring use of a specific trap or knowledge of trap’s127

dimensions. Extensive testing done therein indicated accuracy to reach 75%.128

In [22], Potamitis et al. proposed the modification of typical, low-cost plastic fruit flies’ trap129

(McPhail type) with the addition of optoelectronic sensors monitoring the entrance of the trap in order130

to detect and identify the species of incoming insects, from the optoacoustic spectrum analysis of131

their wing-beat, leading thus automated streaming of insect count. The identification is done based132

on comparison of the amplitude of the time domain recording of an insect entering the trap with the133

ground truth range derived from a large number of same insect recordings, thus not discriminating134

pests with high overlapping spectra. Experimentation indicated a 0.93 and 0.95 average F1-score for135

all fruit flies tested and Dacus in the lab, respectively.136

Shaked et al. [12] presented the design of two smart-traps for four fruit fly species featuring a137

variety of configurations, all of which utilise wireless communications to propagate captured of images138

of trapped insects on sticky surfaces. One rather interesting configuration of this work pertains to the139

network topology that, in addition to the usually utilised star network, also proposes a mesh network140

which provides robustness since multiple routes for for data to travel to exist if one node fails. The work141

did not feature an automated fruit fly identification methodology, while it seems to be an extension142

of the the earlier work of Alorda et al. [14] (under the auspices of the same project, “FruitFlyNet")143

presenting a energy efficient and low cost trap for Olive fly monitoring using a ZigBee-based Wireless144

Sensor Network.145

Finally, a number of works address other notorious pests of commercially important fruits and146

vegetables such as the Tephritid Fruit Flies by use of trapping & detection, control, and regulation147

mostly at the entomological and agronomical levels [23], codling moth using a convolutional neural148

network-based detection pipeline on an unamed commercial dataset [24], and wood-boring beetles149

arriving at high-risk sites [25].150

3. Smart Trap151

As indicated in Section 1, a large amount of various reliable data are to be collected in a152

frequent basis with minimum cost in order to be able to address Integrated Pest Management (IPM)153

requirements. To do so, a generic way of collecting, digitising and transmitting the necessary data at a154

processing center is developed in this study. This general architecture for a smart-trap, the Electronic155

Olive Fruit fly trap, utilises an electronic version of the classical McPhail trap and comprises of the156

following parts:157

McPhail-type trap A McPhail type trap with enlarged upper part completely equivalent in terms of158

size (inner trap volume), environmental conditions (temperature, humidity, etc), and parameters159

effecting the attraction of Dacuses, the entrance type for the pests, and the difficulty of exit. The160

extra height of the upper part is important in order to accommodate all the necessary electronic161

parts described in the sequel as well as to allow space for proper focus of the camera. The162

electronics compartment is to be completely isolated from the rest part of the trap (e.g by means163

of a transparent PVC plate or equivalent methods).164

Wi-fi equipped microcomputer A microcomputer for the task of orchestrating all the necessary165

actions in order to record the data and dispatch these to a networking module (e.g. a GSM166

modem), thus reaching finally to a server/processing center. The microcomputer is to be selected167

based on the following criteria:168

• low cost,169

• computational resources,170

• number of open-source programs available for it,171

• operational stability,172
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• availability of integrated Wi-Fi (and/or other protocols’) transceiver, and173

• capability for integration of camera with fast interface and adequate resolution.174

The key disadvantage of including a microcomputer is its relative high-power consumption,175

despite the numerous techniques existing for the minimisation of stand-by consumption. The176

main alternative, micro-controllers, can also be considered for the task given that preliminary177

tests indicate that the computational load is not too big for their limited resources (such as178

RAM & CPU speed). The microcomputer proposed features a Unix-type operating system for179

openness while with the use of scripts (e.g. python) will collect data from the sensors (mentioned180

in the sequel) at explicitly defined time instances of the day. Then, the data will be transmitted181

through the networking to a server/processing center. Both collection and transmission may be182

synchronised with scripts (e.g. Unix bash).183

Real time clock An accurate battery equipped Real-time clock module.184

Camera An adequate resolution camera with adaptable lenses system in order to achieve focusing185

and zooming.186

Sensors A high accuracy humidity and temperature sensor set within (and additionally possibly187

outside) the enclosure of the trap. Similar remote sensors may also be used in order to collect188

ambient readings.189

Power supply A grid power supply system based a battery with adequate capacity in order to supply190

the necessary electrical power to the smart-trap for a few days. In order for the smart-trap to191

be an autonomous and a maintenance-free device, a solar panel and a charger system are to be192

included and accommodated to a waterproof box nearby the trap.193

Networking Despite the abundance of alternative networking configurations (e.g star, mesh, ad-hoc,194

hybrid, etc.) herein we propose the use of a GSM modem that can serve up to 50 smart-traps,195

leading thus to the star topology. The modem should features external antennas that can be196

replaced with higher gain antennas should it be deemed necessary. The GSM modem is to be197

supplied with power by the solar panel – battery system that supplies the smart-trap.198

Local data storage Use of local data storage (e.g. Secure Digital), in addition to the aforementioned199

operating system, for the temporary storage (and recycling) of collected data will allow to ensure200

the collected data are note lost in case of communication errors or errors of the server/processing201

center, at least up to the point of the next recycling. Accordingly, attention should be paid on the202

expected data volume per sampling of the sensors in addition to the frequency of sampling in203

order to select the required retention level.204

Server/processing center The server/processing center is to be accessed through secure protocols205

(e.g. SSH) and synchronise data directories with the data directories of the smart-traps at206

explicitly defined time instances every day in order to deal with communication costs. To207

ensure the collected data are note lost, should a GSM modem failure occur and do not reach the208

server/processing center, data are also to be stored in the smart-trap’s local storage.209

Following the aforementioned specifications, a prototype (Figures 1a & 1b) of the Electronic Olive210

Fruit fly trap has been created at the Dept. of Informatics, Ionian University, Greece. A demonstration211

network of such Electronic Olive Fruit fly traps has been setup and placed in olive groves in NW212

Corfu, Greece, as shown in Figure 2, and is currently under rigorous testing in order to verify both its213

effectiveness and efficiency in collecting data. Pending its evaluation, the network will be significantly214

expanded and its data will be directly used to further expand DIRT’s dataset as well as its trained215

models.216

4. The Toolkit217

This Section presents the toolkit’s components: the creation processes of the dataset and a detailed218

analysis of its contents, the programming code samples provided and the Dacus identification API.219

Figure 3 presents the flowchart of DIRT’s creation and experimentation process: Data collection,220

splicing, filtering and annotation are described in Section 4.1, while data splitting, CNN training and221
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(a) Prototype of Electronic Olive Fruit fly trap, view 1. (b) Prototype of Electronic Olive Fruit fly trap, view 2.

Figure 1. Electronic Olive Fruit fly trap.

(a) Demonstration network of Electronic Olive Fruit
fly traps.

(b) Olive groves in NW Corfu, Greece.

Figure 2. Electronic Olive Fruit fly trap network.

evaluation are presented in Section 5. The complete Dacus Image Recognition Toolkit is available at222

http://lefkimi.ionio.gr/~avlon/dirt-dacus-image-recognition-toolkit/.223

Data 
collection 

Data splicing Data filtering 

Data 
annotation 

Data splitting 
- training 

Data splitting 
- test 

Training 
CNN 

Evaluation 

Figure 3. Flowchart of DIRT’s creation and experimentation.

http://lefkimi.ionio.gr/~avlon/dirt-dacus-image-recognition-toolkit/
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4.1. Dataset224

DIRT’s data consists of images, the majority of which depict olive fruit fly captures in McPhail225

traps, collected from year 2015 to 2017 in various locations of Corfu, Greece. The images were acquired226

mainly via the e-Olive3 smart-phone application, which allows users to submit reports about olive fruit227

fly captures, and upload images captured from the trap in the field. As the collection of images has228

been done using a variety of hardware (smart-phones & tablets running the e-Olive app, photo-cameras229

available at the field during trap inspection, etc.) the images of the dataset not standardised. Figure 4230

shows the distribution of images as far as their dimensions are concerned.231

Figure 4. Distribution of DIRT’s images dimensions.

The original dataset consisted of 336 images, but after discarding images that either were too232

blurry in order to distinguish olive fruit flies from other insects or no olive fruit flies were present, the233

size of the dataset was reduced to 202 images. Moreover, due to the fact that training on this dataset234

for 50.000 steps did require superior than commonly available hardware, due to memory requirements235

associated with the large size of the available photographs, we decided to slice each image into four236

parts. Thus, after discarding image parts that didn’t depict any olive fruit fly, the final dataset includes237

542 images, a sample of which is shown in Figure 5. From those images 486 were randomly selected238

for training, while the remaining, also randomly selected, 56 images were used for evaluation in our239

experiments. Figure 6 presents the histogram of manually annotated olive fruit flies in images, before240

and after the slicing process of images, as aforementioned.241

3 https://play.google.com/store/apps/details?id=gr.cwa.eolive

https://play.google.com/store/apps/details?id=gr.cwa.eolive
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Figure 5. Sample images from the dataset.

Figure 6. Distribution of images per counted Dacuses.

Label annotation upon our dataset was done with the LabelImg4 annotation tool which allows242

the user to manually draw bounding boxes around objects in images and associate each box to a label,243

as shown in Figure 7. It is important to note, that for images depicting McPhail traps, we annotated244

mostly olive fruit flies that were floating in the liquid solution in addition to the distinguishable245

submerged olive fruit flies, since when submerged, Dacuses tend to create clusters making the task to246

identification very difficult. Bound to this restriction we annotated 2672 olive fruit flies.247

4.2. Programming Code Samples248

In order to stimulate further the research on pests’ management as well as Dacuses image249

recognition, DIRT also includes a set of programming code samples that will allow interested250

researchers to fast-track their use of DIRT’s contents as well as guide them into some rudimentary251

experimentation.252

4 https://github.com/tzutalin/labelImg

https://github.com/tzutalin/labelImg
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Figure 7. Sample images from the dataset with label annotation.

The programming code samples are in Matlab and include the following generic/handling253

functions:254

Load dataset Function load_DIRT_dataset parses the files of the dataset as provided in the archive of255

DIRT and produces a struct array with the associated filenames and folders of both images and256

(xml) annotations using local relative paths. No input arguments are required and the function257

returns the resulting struct array as well as saves it as a file titled DIRT_dataset.mat for future use.258

The definition of the images’ and annotations’ local paths, for content discovery, is clearly noted259

in lines 5 and 6 of the function.260

Preview image with annotation Function preview_img_DIRT_dataset shows a random image of the261

dataset with overlayed annotation(s) of its Dacuses. The first argument is required and refers262

to the dataset as produced by load_DIRT_dataset function. The second argument is the array id263

of the image to preview (optional). If no second argument is provided or its value is false, then264

a random image of the dataset is shown. The third argument is a switch whether to show the265

image or not: if set to true (default) then it displays the image while if set to false then it does not266

display the image. The function returns the image including the overlay of the annotation(s).267

Parse annotation Function parse_DIRT_annotation parses an annotation’s xml file of DIRT dataset and268

returns its contents. The input argument is the char array or string containing the full path to the269

annotation file, including the annotation file’s name and extension. The returned value is a struct270

containing (a) an aggregated array, with size k× 4 where k is the number of Dacuses annotated271

in the image, while the four numbers per annotation describe the lower left x and y coordinates272

of the annotation’s bounding box and the box’s width and height, as well as (b) an array of the273

xmin, xmax, ymin, and ymax coordinates of each annotation’s bounding box.274

Moreover, the programming code samples in Matlab also include a simple but yet complete275

R-CNN [26] training and testing scenario with the following functions:276

Driver Function startFromHere is a driver function for training and testing an R-CNN with the DIRT277

dataset. No input arguments are required and the function does not return any information278

as the last called function therein, test_r_CNN function, presents a graphical comparison of279

the identified by the R-CNN Dacus and the manually annotated ground-truth equivalent. The280

function slices the DIRT_dataset in order to train it with all but one, randomly selected from the281

available, image that will be subsequently used in the test_r_CNN function performing the test282

of the R-CNN.283

Training the R-CNN Function train_r_CNN trains an R-CNN object detector for the identification284

of Dacuses in images. The input argument is the dataset in the format produced by285

load_DIRT_dataset function, while the output of the function is the trained R-CNN object detector.286
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The network utilised herein is not based on a pre-trained network but it is simplistically trained287

from scratch as a demo of the complete process. The resulting network is saved as a file288

titled rcnn_DIRT_network.mat for future use. The function also includes a switch that allows289

the training to be completely avoided and a pre-trained network loaded from the file titled290

rcnn_DIRT_network.mat to be used/returned instead.291

Testing the R-CNN Function test_r_CNN presents a graphical comparison of the identified by the292

R-CNN Dacus, based on the trained network, and the manually annotated ground-truth293

equivalent, as prepared by the preview_img_DIRT_dataset function, side-by-side. The function’s294

first input is the trained R-CNN network, as provided by the train_r_CNN function, the295

second argument is the dataset in the format produced by load_DIRT_dataset function, and296

the third argument is the test image’s id from the array of load_DIRT_dataset, as selected by the297

startFromHere function for the testing procedure.298

4.3. Dacus Identification API299

The capability to identify Dacuses is of paramount importance to olive fruit cultivation and oil300

production, as described in Section 1. In order to further support this necessity, DIRT also includes a301

publicly available rest https API that replies to queries for Dacuses’ identification in user provided302

images. In that manner, the complexity of Dacuses’ identification in images is alleviated from users303

that only need to manage the interaction with the DIRT’s API, also addressed by simplistic web-based304

interface provided by DIRT.305

It should be clearly noted that the proposed API is experimental and under permanent306

upgrade/development as new methods are implemented and more and more data are collected from307

our traps, annotated by experts, submitted to the system and the R-CNN is trained on. Accordingly,308

under no circumstances should the proposed API be used as a sole point of information for any related309

to Dacus infestation or olive-tree pest management decision making.310

The API does not currently require any form of authentication and it features a single endpoint311

that, using the post method, allows the user to upload a single jpeg file-type image of maximum 2312

Mebibytes. On success, the HTTP status code in the response header is 200 OK and the response body313

contains the JSON formatted file that describes the spatial coordinates of the bounding box of each of314

the Dacus(es) identified in the submitted image. On error, the header status code is an error code and315

the response body contains an error object detailing the error that occurred and possible method(s) to316

mitigate it.317

As the process of identification of Dacuses in an image is quite heavy, both in terms of CPU318

and RAM of the server that provides this service, users are informed that our experimentation with319

moderate concurrent load showed that a possible lack of real-timeness in reply reaching at most 30320

seconds, is a strong possibility. Accordingly, both the API and the web interface feature access limit:321

Only 1 access of these services is allowed per IP per 60 seconds, while on transgression the header322

status code is an error code and the response body contains an error object detailing the error that323

occurred and possible method(s) to mitigate it.324

5. Experimental Evaluation325

5.1. Experimental Setup326

For our experiments we choose the Tensorflow Object Detection API5 which is an open source327

framework built upon Tensorflow6, an open source machine learning framework. The Tensorflow328

5 https://github.com/tensorflow/models/tree/master/research/object_detection
6 https://www.tensorflow.org/

https://github.com/tensorflow/models/tree/master/research/object_detection
https://www.tensorflow.org/
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Object Detection API provides a number of pre-trained models7 for the user to use in his experiments.329

The detection models provided were pre-trained on the COCO8, KITI9 and Open Image10 datasets.330

All training sessions run for 100000 steps, with a batch size of one. Thus, training run for 184331

epochs. The hardware configuration where all experiments were conducted can be seen in Table 1.332

Finally, the performance measurement used throughout the experimentation is the Mean Average333

Precision (mAP)[27], a common metric to compare model performance in object detection and it is the334

average maximum accuracy for different recall values. Essentially, mAP combines all individual (per335

test query) average precision into one number. mAP is formally defined in Equation 1, where the set of336

relevant documents for an information need qj ∈ Q is d1, . . . , dmj and Rjk is the set of ranked retrieval337

results from the top result until document dk. Among evaluation measures, mAP has been shown to338

“have especially good discrimination and stability” [28].339

mAP(Q) =
1
|Q|

|Q|

∑
j=1

1
mj

mj

∑
k=1

Precision(Rjk) (1)

Table 1. Hardware configuration

CPU Intel Core i7 920 @ 2.67GHz
GPU NVIDIA TITAN Xp 11GB
RAM 16GB

5.2. Experimental Results340

In order to verify the usefulness of the proposed dataset, a variety of experiments were341

conducted, pertaining mostly at the ability of automatically identifying Dacuses in the images using as342

ground-truth manually annotated spatial identification of Dacuses.343

Firstly, training was performed on the following pre-trained models and the one with the best344

performance was selected in order to conduct further experiments.345

• faster_rcnn_inception_v2_coco346

• faster_rcnn_resnet50_coco347

• faster_rcnn_resnet50_lowproposals_coco348

• rfcn_resnet101_coco349

• faster_rcnn_resnet101_coco350

• faster_rcnn_inception_resnet_v2_atrous_coco351

Table 2 presents the total loss and total time to complete training in the specified steps for each of352

the aforementioned detection models, after training on the DIRT dataset (and thus the removal of the353

“_coco" postfix).354

Figure 8 presents the performance of all models trained on our dataset. The detection model355

that performed the worst, aside from the aforementioned model, was model 4 with a mAP of 57.42%.356

Detection models 3, 5 and 6 performed relatively well, ranging between 68% and 80%. However,357

models 1 and 2 outperformed all the rest with a mAP value of 91.52% and 90.03%, respectively.358

Although, the difference in performance is small (1.49%) between the two, we selected model 1 for the359

rest of our experiments since its training time is nearly four times faster than model 2 (see Table 2).360

7 https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
8 http://cocodataset.org/#home
9 http://www.cvlibs.net/datasets/kitti/
10 https://github.com/openimages/dataset

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
http://cocodataset.org/#home
http://www.cvlibs.net/datasets/kitti/
https://github.com/openimages/dataset
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Table 2. Models’ training details

Index Model Total Loss Training Time

1 faster_rcnn_inception_v2 0.04886 5h 35m 51s
2 faster_rcnn_inception_resnet_v2_atrous 0.1883 23h 21m 39s
3 faster_rcnn_resnet50 0.1029 8h 35m 53s
4 faster_rcnn_resnet50_low_proposals 0.5773 8h 29m 54s
5 faster_rcnn_resnet101 0.1608 12h 57m 49s
6 rfcn_resnet101 0.1349 13h 45m 51s

Figure 8. Detection models performance comparison after training on the olive fruit fly image dataset.

After selecting the best performing model, we investigated how the performance is affected by361

images’ detail conducting thus training on resized images from the initial dataset. In detail, we trained362

our model on 10%, of the original size, to 100% with a 10% increase step. Furthermore, the same363

experiment was repeated, only this time all images were converted to gray-scale in order to verify the364

effect of color in the results obtained.365

Figure 9 shows how the performance of detection model 1 changes when trained upon different366

size scales of the images from the original olive fruit fly dataset. For 10% of the original size the model367

performs rather poorly, with a mAP of 63.15%, in regard to the subsequent resized datasets. For 20%368

and greater, detection precision ranges between 85% and 91%. Interestingly enough, values of mAP for369

scaling between 50% and 100% are nearly stable with small fluctuations, while the difference between370

the full sized images and the images resized in half is 1.13%.371
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Figure 9. Detection model 1 performance for different size scales of the images in the dataset.

Similarly, Figure 10 presents the change in performance of detection for model 1 for different size372

scales of the images, but converted to gray-scale. Once more, for 10% resized images the detection373

precision is low (60.6%) compared to the rest of the sizes. While, between 20% and 100% scaling, mAP374

ranges approximately between 81% and 91%. Finally, after 60% scaling the detection precision is quite375

stable with small fluctuations.376

Figure 10. Detection model 1 performance for different size scales of the images in the dataset, after
conversion to gray-scale.

In Figure 11, the detection precision between the gray-scale and color (RGB) datasets from the377

previous two experiments are compared. Both, have a similar trend in increasing precision as the378

original size of the images is approached. However, the average difference in detection precision379

between 10% and 50% scaling is 2.05% in favour of the RGB dataset. On the other hand, from 60%380

and onward the precision between the RGB and gray-scale datasets reaches about the same with an381

average difference of 0.354% in favour of the RGB dataset.382
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Figure 11. Performance comparison between RGB and gray-scale images for different size scales of the
images.

In the next experiment, we investigated how the performance of the selected model is affected in383

relation to the total number of olive fruit flies in an image. Therefore, we created four new sub-datasets384

(see Table 3) based on the initial dataset, for both the training and testing sets. Specifically, we tested385

the performance on images that contained 3, 7, 10 and 14 olive fruit flies in order to verify the ability of386

the proposed model to retain high performance irrespectively of the density of Dacuses to be identified387

in an image. The values of fruit flies were selected based on the availability of388

Table 3. Trap counts based datasets

Olive fruit fly counts No. of training images No. of test images

3 483 59
7 522 20

10 530 12
14 532 10

Finally, the performance of the proposed methodology was experimented with in relation to389

the number of ground-truth (i.e. manually counted) Dacuses as well as the cumulative number of390

pests in each image. Figure 12 presents the detection precision for four groups of images, where each391

group contains solely images with the same number of ground-truth Dacuses. In all tested numbers of392

ground-truth Dacuses (3, 7, 10, 14) the detection precision doesn’t fall below 89%. The limited variation393

that exists (detecting three olive fruit flies produces the highest mAP value of 96.1% with the lowest394

detection performance of 89.5% for ten Dacuses) is attributed to the size of the each group’s available395

image content in terms of pests to be examined.396
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Figure 12. Detection precision comparison for trap count based datasets

5.3. Results’ Discussion397

Based on the experimental results of Section 5.2, there are three important takeaways:398

Size of images The experimental results on the size of the images taken from the smart-trap, as shown399

in Figure 9, indicate that a high detail provided in photos with increased pixel availability is400

indeed affecting the performance of the proposed methodology, but the ratio of performance’s401

increase falls sharply after discarding 80% of the original information while the difference402

between discarding 50%-10% is approx 1% and thus almost negligible, for some applications.403

Accordingly, the widespread availability of high-pixel cameras, although has been show to404

increase the effectiveness of the identification of Dacuses, develops to be a trade-off between405

marginally higher performance and increased volume of data that potentially have to be stored406

locally to limited persistent storage or transported over either meter connections (e.g. GSM407

modem) or in ad-hoc networks affecting thus the network’s load.408

Color information of images Similarly to the previous argument, the color information of the images409

obtained from the smart-trap, as shown in Figures 10 and 11, is shown to be of secondary410

importance as, in both scaled gray-scale images as well as in full scale images after conversion to411

gray-scale, the effect of RGB color on performance is almost negligible. This supports further the412

previous argument of the diminished role of high-pixel images even when these are gray-scale413

and thus require approx. one third of the RGB equivalent images. Thus, the selection of414

RGB or gray-scale cameras reverts to the aforementioned trade-off between minor increase in415

identification performance versus volume of data.416

Number of Dacuses in images The ability of the proposed method to retain high performance417

irrespectively of the number of collected Dacuses in the trap is very important in order to418

address a variety of scenarios of traps’ designs, geo- & weather- characteristics of the olive grove,419

varieties of olives etc. The variation shown in Figure 12 is approx. 6.5% and thus requires further420

examination, despite the fact that for the specific traps used, all values of number of Dacuses421

equal or greater than seven are similarly considered to be a significant infestation indication422

requiring action. All in all, a general trend is evident for the parameters tested: the number of423

insects (and by extension Dacuses) inversely affects the detection precision, an effect attributed424

to the proportionally higher number of insects in the trap when increased number of Dacuses are425

measured.426
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6. Conclusion427

This work presents the “Dacus Image Recognition Toolkit" (DIRT), a collection of publicly available428

data, programming code samples and web-services focused at supporting research aiming at the429

management the olive fruit-fly as well as extensive experimentation on the capability of the proposed430

dataset in identifying Dacuses using Deep Learning methods. The dataset includes 542 images431

depicting McPhail traps’ contents with experts’ manually annotated spatial identification of Dacuses in432

each image. To further support research on Dacuses identification, the toolkit includes programming433

code samples in matlab that allow fast initial experimentation on the dataset or any other Dacus image434

set while in addition, a public rest https API and web-interface has been developed that reply to435

queries for Dacus identification in user provided images.436

It should be noted, that we intend to maintain and enhance the Toolkit and, accordingly, DIRT’s437

dataset enlargement and further training of the web-service is assumed by our team as a perpetual438

process. Up-to-date information on DIRT’s dataset volume and assorted programming code samples439

as well as further training of the models used in the Dacus Identification API, are available at the440

Toolkit’s website.441

Extensive experimentation on the use of deep learning for Dacus identification on the dataset’s442

contents, presented herein, include a variety of experiments pertaining mostly at the ability of443

automatically identify Dacuses in the images using as ground-truth manually annotated spatial444

identification of Dacuses. Results indicated that the performance accuracy (mAP) of 91.52% is445

possible based on publicly available pre-trained and further trained on Dacuses models. Moreover, the446

experimental results indicated a trade-off in both images’ pixel size & color information (both adding447

to images’ detail, file size and complexity of approaches) and mAP performance that can be selectively448

used to better tackle the needs of each usage scenario.449

There exist a number of research directions that DIRT could be further ameliorated in future450

versions. The most obvious one pertains to the enlargement of the toolkit’s dataset in both volume of451

images as well as in variability of traps’ type, allowing thus better training and accordingly recognition452

performance. Moreover, the use McPhail type traps with liquid pheromones to attract pests have453

indeed lead to some degree to “pest soup images" where a number of the Dacuses to be identified454

are submerged in the liquid and thus indistinguishable even by in situ experts much less by remote455

observers through images. As the aim of this work is to provide a methodology to identify Dacuses456

through images, future work on the toolkit could include a more detailed ground-truth identification457

of clustered and submerged Dacuses for the scenarios supporting scarce image sampling of the trap,458

wherein such situations may arise. Moreover, the identification of the genre of the Dacuses collected459

at the traps is of high importance and requires further exploration. As far as the API is concerned,460

a more time-responsive and with less access restrictions is certainly warranted for wider use and461

experimentation, both of which will be possible with special hardware and more advanced indexing462

methods. Moreover, an extension of the API to feature evaluations of, both of it’s submitters and463

experts, users will certainly provide for, at least, an ever expanding dataset and potentially increased464

performance leading to better user experience. Finally, this research can be further ameliorated by465

additional use of methods employed in generic image recognition such as combination of deep and466

handcrafted image features, local learning frameworks to predict images’ class as well as use of467

insect-specific image recognition methods focusing on insects’ wing, body and eye features.468
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